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Cells rely on protein homeostasis to maintain proper biological functions. Dysregulation of
protein homeostasis contributes to the pathogenesis of many neurodegenerative diseases
and cancers. Ubiquilins (UBQLNs) are versatile proteins that engage with many components
of protein quality control (PQC) machinery in cells. Disease-linked mutations of UBQLNs are
most commonly associated with amyotrophic lateral sclerosis (ALS), frontotemporal demen-
tia (FTD), and other neurodegenerative disorders. UBQLNs play well-established roles in
PQC processes, including facilitating degradation of substrates through the ubiquitin–
proteasome system (UPS), autophagy, and endoplasmic-reticulum-associated protein
degradation (ERAD) pathways. In addition, UBQLNs engage with chaperones to sequester,
degrade, or assist repair of misfolded client proteins. Furthermore, UBQLNs regulate DNA
damage repair mechanisms, interact with RNA-binding proteins (RBPs), and engage with
cytoskeletal elements to regulate cell differentiation and development. Important to the
myriad functions of UBQLNs are its multidomain architecture and ability to self-associate.
UBQLNs are linked to numerous types of cellular puncta, including stress-induced biomole-
cular condensates, autophagosomes, aggresomes, and aggregates. In this review, we focus
on deciphering how UBQLNs function on a molecular level. We examine the properties of
oligomerization-driven interactions among the structured and intrinsically disordered
segments of UBQLNs. These interactions, together with the knowledge from studies of
disease-linked mutations, provide significant insights to UBQLN structure, dynamics
and function.

Introduction
Cells must maintain an intricate protein homeostasis to maintain proper function and survival. The
protein flux of the cell must remain in balance despite being continuously challenged by limited
protein folding capacity [1], environmental stress and aging. Maintenance of protein homeostasis is
particularly important in neurons due to their unique morphology and long lifespan [2].
Dysregulation of homeostasis is associated with neurodegenerative diseases such as Amyotrophic
lateral sclerosis (ALS), Huntington’s disease (HD), Alzheimer’s disease (AD) and frontotemporal
dementia (FTD) [3–5]. Cells have developed protein quality control (PQC) mechanisms to surveil
proteome balance, facilitate protein folding, and respond to accumulation of protein aggregates.
Due to the highly complex and crowded nature of the cellular environment, substrate targeting in

the PQC pathways can be challenging. Cells rely on shuttle proteins that have dual capability to inter-
act with substrate and PQC components to facilitate this process, closing the gap between substrates
and degradation machineries [6]. Ubiquilins (UBQLNs) are multifaceted shuttle proteins, as they can
chaperone misfolded proteins, but also facilitate degradation of substrates through the ubiquitin–pro-
teasome system (UPS), autophagy, and endoplasmic-reticulum-associated protein degradation (ERAD)
pathways [7–10]. UBQLNs are invoked during cellular stress responses, as evident by their localization
into stress granules, a stress-induced membraneless organelle consisting of arrested translation
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machinery, mRNAs, and proteins [11–13]. UBQLNs also localize to cellular aggregates and aggresomes to help
the cell sequester misfolded protein into separate locations [14,15]. Understanding the structure, dynamics, and
function of UBQLNs is therefore essential to elucidating PQC mechanisms in cells.
Mutations in the human UBQLN proteins have been reported to associate with or cause a variety of diseases,

including neurodegenerative disorders and cancers. The most well-characterized pathological mutations are
extensively related to neurodegenerative diseases, specifically ALS, FTD, and AD [15–21], among others such
as Brown–Vialetto–Van Laere syndrome (BVV LS) [22]. Additionally, changes in the protein expression levels
of UBQLNs are associated with diseases such as HD [23], breast, lung, and gastric cancers [24–27]. While the
underlying molecular mechanisms associated with disease mutations of UBQLNs remain unknown, many
studies show that mutant UBQLN pathology often involves compromised PQC mechanisms (UPS and autop-
hagy), and/or formation of disease-related aggregates [12,15,28–32].
To date, five human UBQLN proteins are known (1, 2, 3, 4, and L). Among these five UBQLN proteins,

UBQLN3 and UBQLNL are specific to testes [33,34], whereas UBQLN1, 2 and 4 are widely expressed in all
tissues [35]. Notably, UBQLN2 expression is elevated in the nervous system whereas UBQLN1 and UBQLN4
are relatively evenly expressed throughout all tissue types [35–37]. Given the ubiquitous expression of these
three paralogs, this review will focus on elucidating the biochemical and biophysical properties of UBQLN1,
UBQLN2, and UBQLN4.
In the first part of this review, we summarize the structural properties of the individual domains in

UBQLNs, and how these domains interact with each other to drive UBQLN oligomerization and self-assembly.
UBQLN’s ability to self-assemble is critical to its localization into intracellular puncta, including membraneless
organelles, autophagosomes, and aggregates. Next, we summarize the functional roles of UBQLNs in cells, with
special emphasis on PQC mechanisms. We elaborate on insights gained from disease-linked mutations on
UBQLN functions. Combining current knowledge, we explore how regulation of oligomerization may contrib-
ute to UBQLN functionality and cross-talk among the different PQC pathways. Finally, we highlight future
directions to elaborate UBQLNs’ roles in neurodegenerative diseases and cancers.

Structure of UBQLNs
UBQLN1, UBQLN2 and UBQLN4 are widely expressed in humans and comprise 589, 624, and 601 amino
acids respectively (Figure 1A). UBQLN1 is 74% identical with UBQLN2, while UBQLN4 is 60% identical with
UBQLN1. UBQLNs are found in the nucleus and cytoplasm of cells, appearing either diffuse in these compart-
ments or organized into puncta. UBQLN4 localizes to the nucleus and the ER [38], while UBQLN2 has been
observed in the nucleus and cytoplasm depending on cell state [28,37,39]. UBQLN1 appears to be cytosolic
[40,41]. Interestingly, overexpression of UBQLNs typically produce numerous punctate structures throughout
the cell [17,42,43].
All three UBQLNs share similar domain architecture, consisting of a N-terminal Ubiquitin (Ub)-like (UBL)

domain, a C-terminal Ub-associated (UBA) domain and two STI1 regions in the middle (Figure 1A). The
UBL-UBA construct of the UBQLNs is similar to other Ub-binding protein shuttles, such as Rad23B/HR23B
and Ddi1 [44,45]. Located between the two folded UBL and UBA domains, the middle region is largely intrin-
sically disordered (Figure 1B). UBQLN2 contains a unique proline-rich region (PXX), where neurodegenerative
disease-related mutations are found disproportionately. This multidomain architecture of UBQLNs enables a
rich pool of diverse binding partners that include PQC components, such as the proteasome, autophagic
proteins, misfolded proteins, and ubiquitinated substrates. The largely intrinsically disordered segments confer
flexibility and dynamics to UBQLNs that contribute to functionality as we will discuss below.

Ubiquitin-like (UBL) domain
The UBL domain is highly conserved among the UBQLNs, especially between UBQLN1 and UBQLN2
(Figure 2). As its name implies, the UBL domain is structurally similar to Ubiquitin (Ub) despite low sequence
identity. The canonical hydrophobic patch formed by Ub residues L8, I44, V70 is mostly conserved in the UBL
domain (UBQLN2 residues T39, I75, V101). However, the electrostatic surface potential differs between
UBQLN UBL and Ub (Figure 3A). Consequently, the UBL domain and Ub share some common binding
partners, such as the Ub-binding shuttle protein hHR23b and proteasome subunits, but with different binding
affinities [46].
The UBL domain interacts directly with subunits of the proteasome, the main proteolytic machinery of the

cell (Figure 4A). The proteasome is composed of a 20S catalytic core and can be capped with different
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Figure 1. Domain architecture and sequence characteristics of UBQLNs.

(A) Domain architecture map of UBQLN1, UBQLN2 and UBQLN4 with UBL, STI1-I, STI1-II, PXX, and UBA domains colored as

red, dark blue, blue, magenta, and green, respectively. PXX is a proline-rich region unique to UBQLN2. (B) Predictions for

UBQLN disorder, prion-like propensity, and phase separation propensity. PONDR-FIT [96] and DISOPRED3 [97] predict

intrinsically disordered regions. PONDR-FIT is a meta-predictor that produces prediction scores by combining results from a

series of algorithms; DISORPRED3 is a separate program trained on conserved sequence features of intrinsically disordered

regions, identified by missing residues in high-resolution X-ray structures [96,97]. For both programs, higher values represent

protein regions likely to be disordered. PLAAC identifies prion-like domains (PrD.like) consisting of certain hydrophobic residue

patterns that can speed amyloid formation [98]. Phase-separation propensity scores (PScore) identifies intrinsically disordered

protein sequences that may drive liquid–liquid phase separation (LLPS), mainly by pi–pi contact contributions [109]. The overall

PScores for UBQLN1, 2 and 4 are 2.91, 3.24 and 3.7, respectively. (C) Comparison of the amino acid compositions between all

proteins (structured and unstructured) in the UniProt database [168], disordered proteins and domains in the DisProt database

[169], and STI regions found in UBQLN1, 2, and 4.
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regulatory subunits, such as the 19S regulatory cap [47]. The UBQLN UBL domain binds directly to 19S cap
proteasomal receptors Rpn3, Rpn13, and Rpn10 (Figure 3B) [7,48,49]. These proteasomal receptors also recog-
nize polyubiquitinated substrates. Notably, the Rpn13 and Rpn10 proteasome subunits preferentially interact
with the UBQLN UBL over Ub. However, the binding preference is modest as the interaction between the UBL
and Rpn13 (Kd∼ 10 mM) is only three-fold stronger than the interaction between Rpn13 and K48-linked diUb
[48,49]. Notably, Rpn10 binding preference favors polyUb over UBL in the presence of long K48-linked
polyUb chains [50].
The UBQLN UBL domains interact with the two ubiquitin-interacting motifs (UIMs) of Rpn10 and the

pleckstrin-like receptor for ubiquitin (PRU) domain of Rpn13 (Figure 3D) [48,49]. In Rpn10, both UIMs bind
to UBQLN2 UBL, however, the first UIM exhibits 25-fold higher affinity indicative of preferred occupancy at
this site [49]. First found in Rpn10, the UIM is not unique to the proteasome [51,52]. In fact, other cellular
components recruit UBQLN proteins via UBL–UIM interactions as well. For example, epidermal growth factor
substrate 15 (EPS15), an adaptor protein involved both in secretion and endocytosis [53], interacts with
UBQLN1 via its UIM, and this UBL–UIM interaction recruits EPS15 into UBQLN1-positive aggregates in vivo
[42]. The co-chaperone human neuron specific DNAJ-like protein 1a (HSJ1a) and ataxin-3 rely on their UIMs
to bind UBQLN1 and consequently regulate the formation of aggresomes [14]. Aggresomes accumulate
misfolded proteins to minimize their toxicity in the cytosol [54].

Ubiquitin-associated (UBA) domain
The Ubiquitin-associated domain is a small (∼45 amino acid) helical domain, named for its ability to bind Ub.
This domain is highly conserved, especially among proteins that are involved in ubiquitination and degradation
processes. For example, UBA domains with similar structure are found in Ubiquitin ligase (E3) HUWE1, a
substrate-specific ubiquitination enzyme, and the UPS shuttle hHR23b that interacts directly with ubiquitinated
substrates (Figure 3C) [55,56]. Sequences of the C-terminal UBA domains found in all UBQLN proteins are
over 93% identical. The α1 helix residues (UBQLN1 Met-557 and Phe-559) and α3 helix residues (UBQLN1
Ile-576, Ile-580, and Leu-584) form the binding interface with the hydrophobic patch on Ub, consisting of
Leu-8, Ile-44, and Val-70 [57,58]. These UBQLN UBA residues are conserved across all UBQLNs (Figure 3C),
and the same residues are involved in UBQLN2 UBA interactions with Ub [13]. Indeed, the tight binding affin-
ity between UBA and Ub (Kd∼ 1–5 mM) is relatively unchanged in the context of polyUb chains, indicative of
UBQLN’s ability to interact with either monoUb or polyUb tags on ubiquitinated substrate proteins. As the
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Figure 2. Sequence alignments of the UBQLNs.

Sequence alignment of UBQLN1, UBQLN2, and UBQLN4 performed using T-Coffee [170]. UBL STI1-I, STI1-II, PXX, and UBA

domains are colored as red, dark blue, blue, magenta, and green, respectively. Visualized with Jalview [171], and residues

colored according to this scheme: beige for hydrophobic, blue for positive, red for negative, green for polar, magenta for

prolines and glycines, and yellow for aromatic amino acids.
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same residues on Ub are used to interact with proteasomal receptor Rpn10 [59], competition exists for ubiquiti-
nated substrates between the UBQLN proteins and the proteasome. Substrates could be transferred from
UBQLNs to the proteasome for processing, consistent with UBQLN shuttle functionality.
Aside from targeting polyubiquitinated substrates to the proteasome for degradation, evidence exists that the

UBA domain plays a protective role for certain proteins such as anti-apoptotic BCL2-like protein BCLb,
Insulin-like growth factor-1 receptor (IGF1R), and ER-associated membrane protein extended synaptotagmin 2

A

B C

D

Figure 3. Known structures and binding interfaces of UBQLN domains.

(A) Structural comparison of UBQLN2 UBL to Ubiquitin (Ub). Color represents the surface charge electrostatic potential (±5 kT/

e). (B) 19S proteasome regulatory subunits that interact with UBQLNs (labeled), including Rpn3, Rpn10/S5a and Rpn13. Shown

is the yeast 19S regulatory cap (PDB: 4CR2). (C) Structural comparison between UBA domains found in different Ub-binding

proteins. (D) Structural comparison between the Ub-binding pattern/domains and Ub/UBL proteins. Ub/UBL domains are

colored cyan, with Ub-binding domains/motifs colored in green, yellow, and orange.
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Figure 4. Binding partners and known disease-linked mutations of UBQLN proteins. Part 1 of 2

(A) Interactions between UBQLNs and binding partners involve different domains of the proteins. The UBL domain interacts

with proteasome subunits [7,48,49], UIM-containing proteins like EPS15, ataxin-3 and HSJ1a [14], and UBA-domain containing

proteins hHR23a and UBQLNs [9,46,105,172]. The UBA domain interacts with mono- and polyUb [7,9,13], TDP-43 [146,149],
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(ESYT2) [40,60]. This is presumably due to the UBA binding to Ub and blocking polyUb chain elongation on
substrate proteins. Therefore, the UBA domain could also prevent substrate polyubiquitination and subsequent
degradation [60]. The UBA domain of Dsk2 (budding yeast homolog of UBQLNs) also protects Dsk2 from
proteasomal degradation, presumably due to the stable structure of the UBA domain resisting the initiation of
Dsk2 degradation at the proteasome, resulting in release of Dsk2 [60]. It is notable that UBQLNs are capped
by folded domains on both the N- and C-terminus.
Although less well-studied, the UBA domain interacts with the Rpn10/S5a subunit and possibly the 20S core

of proteasome [61]. These interactions could be the result of direct binding to components of the proteasome,
in combination with indirect binding through proteasome-bound polyubiquitinated proteins [61]. The interac-
tions may bring the substrate close to the proteasome, facilitating the transfer of substrate to the proteasome.

STI1 regions
Two STI1 regions, namely, STI1-I and STI1-II, are found in UBQLN1, 2, and 4. Other nomenclature defines a
total of four STI regions, such that STI1 and STI2 compose STI1-I, while STI3 and STI4 compose STI1-II
[4,41]. The STI1 regions are conserved among the UBQLNs, with >94% sequence identity between UBQLN2
and 1, and ∼ 82% between UBQLN4 and UBQLN1 for both STI1-I and STI1-II. The STI1 regions of UBQLNs
were named from stress-induced phosphoprotein 1 or HSP70/HSP90 organizing protein (STI1/Hop), which is
a co-chaperone protein that mediates heat shock response of the HSP70 genes [62]. The UBQLN STI1 regions
resemble the amino acid sequence of the two aspartate/proline-rich domains, DP1 and DP2, of STI1/HOP.
DP1 and DP2 domains regulate glucocorticoid receptor activation [63,64]. Interestingly, while STI1/HOP DP1
and DP2 domains are largely composed of α-helices, the STI1 regions are predicted to be intrinsically disor-
dered, despite the sequence similarities (Figure 1B) [64].
Functions of the STI1 regions are much less understood when compared with the UBL or UBA domains.

Recent studies reveal that the STI1 regions interact with PQC components (e.g. HSP70 chaperone,
autophagosome-associated LC3), contributing to UBQLNs’ role in mediating PQC [28,65]. Additionally, STI1
regions in UBQLNs may serve as interaction hubs, or ‘cargo decks’ for binding partners. Proteomics studies on
UBQLNs have determined a number of client proteins that bind to the middle region of UBQLNs (Figure 4A).
For example, UBQLN2 STI1 regions interact with HSP70 family proteins Stch [66]; UBQLN1 STI1 interacts with
mammalian target of rapamycin (mTOR) [36]; UBQLN4 STI1-II recognizes and binds misassembled membrane
proteins [67]; UBQLN4 STI1-I interacts with autophagy protein LC3 [9]; UBQLN1 STI1-I and STI-II mediates
its binding to anti-apoptotic BCL2 protein BCLb, insulin-like growth factor 1 receptor (IGF1R) and receptor
tyrosine kinase ESYT2 [41]. Importantly, UBQLNs can either facilitate the degradation of the clients through the
interactions (misassembled membrane proteins), or stabilize them (BCLb, IGF1R, ESYT2) [41,67,68].
We speculate that the ability of the STI1 regions of UBQLNs to interact with such a diverse set of proteins is

due to its unique amino acid composition and intrinsically disordered nature. The STI1s resemble low-
complexity domains (LCDs), defined as regions where only a few types of amino acids make up its composition.
Met and Gln residues (along with Leu, Asn, and Pro) are overrepresented in the STI1 regions (Figure 1C). These
residues mediate hydrophobic and polar interactions, such as hydrogen bonds and π–π interactions. Interestingly,
the STI1-II regions of UBQLNs exhibit prion-like characteristics (Figure 1B). Proteins with prion-like sequences,
such as ALS-linked TDP-43 and FUS exhibit tendency to form pathological β-sheet rich aggregates in cells, and
also mediate interactions to form biomolecular condensates/membraneless organelles (Box 1). In line with these
observations, the middle region of UBQLN2 (without the UBL and UBA domains) is enough to recruit
UBQLN2 into stress granules, a type of membraneless organelle [12]. The UBQLN4 STI1-II region is the least

Figure 4. Binding partners and known disease-linked mutations of UBQLN proteins. Part 2 of 2

presenilins [17,104], and UBL-domain containing proteins like hHR23a and UBQLNs [9,46,105,172]. The central region of the

UBQLNs including the two STI1 regions, linkers and PXX region (UBQLN2 only) is involved in binding to a variety of partners,

such as erasin [8], mTOR [36]; HSP70 chaperones [28,66], ER membrane B12 J protein [130]; IGF1R, ESYT2, and BCLb [40],

and misassembled membrane proteins [67]. (B) Mutations are indicated by arrows; all are linked to neurodegenerative diseases

(see Table 2). The UBQLN2 PXX region harbors most of the mutations, followed by the STI1-II region. UBQLN1 and UBQLN4

each carry one known missense mutation. Asterisks represent mutations that were detected in patients with neurodegenerative

diseases, but the underlying mechanism of action is unknown.
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prion-like, and this same region is predicted to be the least disordered of all UBQLN STI1 regions according to
PONDR-FIT calculations (Figure 1B). The structured nature of UBQLN4’s STI1-II region has been shown to be
functionally significant for misfolded protein recognition [67]. As we will describe below, the STI1-II region
drives the self-assembly and oligomerization of UBQLN2, complementing the prion-like predictions [13].

Proline-rich region is unique to UBQLN2
Of all UBQLN proteins, the UBQLN2 paralog is the only one to contain the proline-rich (PXX) repeat region,
which is located between the STI1-II region and UBA domain. Notably, the PXX region harbors most of the
UBQLN-associated disease-linked mutations, specifically linked to ALS and FTD, among others [15,19,20,88–91].
The amino acid sequence in the PXX region mimics that of collagen with a high representation of Pro and Gly
residues, with mostly hydrophobic residues in between. Additionally, the sequence of the PXX region resembles
elastin and elastin-like polypeptides (ELPs). ELPs are a class of self-interacting biopolymers that has been widely
studied from a biomaterials perspective as they undergo temperature-based phase transitions to form condensates
[92–94]. Despite the repeating proline residues, the PXX region has a low tendency to form polyproline II helical
structure, as predicted by the PPIIPRED program [95]. Using NMR spectroscopy, our lab has found that the
PXX domain is intrinsically disordered [13]. Binding to the PXX region may alter polyproline helix propensity,
although no binding partners for this region are yet known. Interestingly, the PXX domain participates in the
self-interactions of UBQLN2, thus contributing to UBQLN oligomerization (see below) [13].

Box 1. Membraneless organelles and protein
aggregates
Biomolecular condensates, or sometimes referred to as membraneless organelles, selectively
enrich macromolecular components such as protein and RNA in comparison with the surround-
ing milieu [69,70]. Unlike their membrane-bound counterparts, condensates are not surrounded
by a lipid bilayer, thus rendering them dynamic, liquid-like, and allowing them to exchange
content with their surroundings rapidly [69]. These biophysical properties confer condensates the
ability to form and dissipate on a much faster time scale than membrane-bound organelles [69].
For example, cytoplasmic stress granules rapidly assemble in response to external stressors,
such as oxidative stress, heat shock or proteasomal inhibition.
Liquid–liquid phase separation (LLPS) is hypothesized as the underlying biophysical mechan-

ism that leads to the formation of biomolecular condensates [71–73]. LLPS is a thermodynamic
process by which macromolecules demix into at least two phases: a dense droplet phase con-
sisting of a high concentration of selective proteins, DNA, or RNA in equilibrium with a dilute
phase where the concentrations of these macromolecules are much lower. An important driver of
LLPS under physiological conditions is high multivalency, i.e. the ability to noncovalently interact
with other components at multiple sites [74–77]. Multivalency arises from long, intrinsically disor-
dered segments (sometimes enriched in certain amino acids in so-called low complexity
domains) and/or many folded domains that are connected by linkers (e.g. poly-SUMO scaffold
proteins interacting with poly-SIM substrates [75,78–80]). Condensates form when macromole-
cules reach concentration thresholds, above which the components phase separate. Notably,
this behavior is not straightforward for condensates assembled from heterotypic interactions
[81,82].
Recent studies suggest that LLPS is on pathway to the formation of insoluble aggregates or

protein inclusions that are characteristic of neurodegenerative disorders [83,84]. Condensates
with disease related-mutated components can undergo liquid-to-solid phase transitions over
time [85–87]. Therefore, the distinction between condensates and aggregates is blurred, and past
studies of intracellular ‘puncta’ or ‘foci’ will need to reexamine their biophysical properties.
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Linkers
A significant portion of UBQLN sequence consists of linker regions that connect the various domains described
above. The linkers are predicted to be disordered by both the PONDR-FIT and the DISOPRED programs
(Figure 1B) [96,97]. Being as long as 130 residues (between STI1-I and STI1-II regions) or as short as 30
amino acids (between STI1-II and PXX), the linkers likely impart flexibility among the domains and permit
simultaneous binding to multiple components, e.g. proteasome and ubiquitinated substrates. Interestingly, parts
of the linker regions exhibit prion-like characteristics, according to the PLAAC prediction algorithm [98]
(Figure 1B). These prion-like segments likely contribute to self-interaction and potentially mediate the accumu-
lation of the UBQLNs into aggregates. In UBQLN4, the hydrophobic region between UBL and STI1-I region
interacts with small hydrophobic (SH) protein of mumps virus [99]. While the exact consequence of this
binding is unclear, it was speculated that the virus disturbs normal cellular function of UBQLN4, resulting in
an anti-apoptotic function. Residues between the STI1-II and UBA domain (residues 550–570 in UBQLN2) are
prion-like, and also exhibit some α-helical propensity [13]. Mutations in this segment alter UBQLN2 self-
association and ability to phase separate and form condensates [100]. These findings are reminiscent of transi-
ent α-helical structure in ALS-linked TDP-43 that contributes to its oligomerization, phase separation and
normal functions [101].

UBQLN domains interact with each other to drive oligomerization
Oligomerization is important for the functionality of UBQLNs and many other shuttle proteins [102,103].
UBQLNs form homo- and hetero-dimers, although the Kd of dimerization remains unknown. Specifically, each
of the UBQLNs (1, 2, and 4) forms homodimers [9,11,104]. UBQLN1 or UBQLN2 can form heterodimers
with UBQLN4 [9]. Studies have found that, in addition to dimeric forms, UBQLN1 and UBQLN2 can exist in
oligomeric assemblies of various sizes; disease mutations may perturb this property [11,104].
UBQLN oligomerization is mainly dependent upon the STI1-II region of the proteins [13,41,104]. Using a

UBQLN2 construct that removed residues 379–486, which contains the entire STI1-II region (residues 379–
462), we found that UBQLN2 can be converted into monomeric form [13,100]. Our NMR study on UBQLN2
450–624 found that residues 450–470 exhibited exchange broadening, consistent with their role in driving self-
association. We also determined that a C-terminal construct of residues 487–624, which lacks the STI1-II
region was also monomeric, at least up to 500 mM [13]. Additionally, other regions outside the STI1-II region
contribute to oligomerization of UBQLN2. Using NMR paramagnetic relaxation enhancement (PRE) experi-
ments that provide proximity information between an installed spin label and nearby residues, we found that
the UBA domain transiently interacts with the C-terminal portion of the STI1-II region [11]. Additionally, we
showed that disease-linked mutations in the PXX region of UBQLN2 also increase oligomerization propensity
in a C-terminal construct of UBQLN2 (residues 450–624). Interestingly, the effect is recapitulated in full-length
UBQLN2 for at least the P506T mutation [29]. Native-PAGE experiments showed P506T forming high-
molecular mass aggregates versus the largely monomeric wild-type UBQLN2 in soluble mouse brain lysates
[29]. However, in vitro experiments of purified full-length UBQLN2 mutants show that PXX mutations do not
enhance oligomerization, so it is likely that the situation in cells is more complex and/or that the N-terminal
part of UBQLNs further regulate oligomerization propensity [28].
UBA–UBL interactions also influence UBQLN oligomerization [13]. The UBQLN2 UBA domain interacts

directly with its UBL domain with a weak binding affinity (Kd∼ 175 mM). The UBA–UBL interaction can
occur intramolecularly, between members of the UBQLN family (e.g. UBQLN1 UBA domain binds to
UBQLN4 UBL domain) [9,105], or between UBQLN UBA and other UBL-containing proteins (e.g. UBQLN2
UBA domain binds hHR23a UBL domain [46]). However, it is not entirely clear what types of inter-domain
interactions contribute to the oligomerization of the UBQLNs and what types counteract it. An increase in
oligomerization of UBQLN2 was observed when the UBA domain was deleted [104], suggesting that the
UBA-involving interactions may actually down-regulate oligomerization instead.

UBQLN2 oligomerization is linked to liquid–liquid phase separation
We recently showed that UBQLN2’s oligomerization propensity is linked to its liquid–liquid phase separation
(LLPS) behavior in vitro and its recruitment to biomolecular condensates in cells [13]. UBQLN2 self-assembles
into liquid-like, stress-induced condensates [13,29,39]. In addition, endogenous UBQLN2 colocalizes with
stress granules. These observations are fully consistent with UBQLN2 undergoing LLPS in cells.

© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society 3479

Biochemical Journal (2020) 477 3471–3497
https://doi.org/10.1042/BCJ20190497

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/477/18/3471/893702/bcj-2019-0497c.pdf by Syracuse U

niversity Library user on 06 O
ctober 2020



Oligomerization drives LLPS of many other protein systems, including heterochromatin protein 1 (HP1a),
nucleophosmin (NPM1), and nuclear speckle-associating protein SPOP, among others (Box 1) [106–108].
In the test tube, UBQLN2 undergoes a phase transition into forming dynamic, round, protein-dense puncta,

as temperature is increased to near physiological conditions [13]. This phase behavior is called LCST (lower
critical solution temperature), as there is a temperature below which the protein solution does not phase separ-
ate. LLPS of UBQLN2 relies on the oligomerization-driving STI1-II region as well as the UBA domain.
Removal of STI1-II abrogated LLPS for all conditions tested, and deletion of the UBA domain significantly
increased the protein concentration necessary for UBQLN2 LLPS. However, the UBL domain, STI1-I and PXX
regions all affect UBQLN2 LLPS. To better understand the molecular basis of UBQLN2 LLPS, we adopted the
‘stickers and spacers’ framework used to describe associative polymers. ‘Stickers’ are residues involved in the
multivalent interactions that provide the driving forces for LLPS, whereas ‘spacers’ are the regions between
stickers and do not significantly drive LLPS [82,100]. We classified segments of UBQLN2 residues as either
stickers or spacers according to concentration-dependent NMR data on a C-terminal construct consisting of
residues 450–624 [100]. To test these classifications, we selected three ‘sticker’ positions (497, 506, 564) and
two ‘spacer’ positions (525, 538). Consistent with our expectations, mutations in the stickers, but not spacers,
substantially alter UBQLN2 oligomerization and phase separation [100]. ALS-linked disease mutations in the
PXX domain also affected UBQLN2’s LLPS profile by decreasing the protein concentration and temperature
required for phase separation, while also promoting a liquid-to-solid transition that sees UBQLN2 droplets
solidifying into aggregate-like structures in vitro [11,100].
Interestingly, the PXX domain, which is unique to UBQLN2, is not essential for LLPS [13]. UBQLN2 retains

LLPS behavior when the PXX domain is removed, although the LCST phase transition is not as sharp as for
full-length UBQLN2 [13]. As none of the other UBQLNs contain the PXX segment, we speculate that
UBQLN1 and UBQLN4 also undergo LLPS. Using the phase separation predictor from the Forman-Kay
laboratory [109], all three UBQLN paralogs scored close to the phase separation threshold, with UBQLN4
having the highest overall PScore (Figure 1B). Interestingly, residues in all linker regions and the UBQLN2
PXX domain exhibit the highest phase separation propensity. Further evidence that supports LLPS of UBQLNs
is that UBQLN1 and UBQLN4 localize in intracellular puncta, as we will discuss below [14,17,42].

Physiological functions of UBQLNs
UBQLNs are truly versatile, multifaceted proteins that carry out diverse cellular functions (Figure 5A). UBQLNs
participate in multiple PQC pathways, including the ubiquitin–proteasome system (UPS), autophagy, and
endoplasmic-reticulum-associated protein degradation (ERAD). Additionally, UBQLNs exhibit molecular chaper-
one functions to prevent specific protein substrates from misfolding. UBQLNs also participate in DNA/RNA
metabolism, cell differentiation/development and DNA damage response. We examine the role of UBQLNs in
these pathways below and summarize how different UBQLN paralogs mediate these functions in Table 1.

UBQLNs target proteins for degradation via UPS
The ubiquitin–proteasome system (UPS) is a vital protein degradation mechanism in eukaryotes. Its proper
functions rely on many components, including enzymes (E1, E2, E3) responsible for the ubiquitination of
substrates, shuttle proteins that direct ubiquitinated substrates to the proteasome, and ultimately the proteolytic
activity of the proteasome. Ubiquitination is a post-translational modification that covalently attaches mono- or
polyUb chains onto protein substrates at specific positions (often lysines). These Ub markers act as signaling
tags for various cellular pathways. K48-linked polyUb is the common tag for proteasomal degradation;
K63-linked polyUb, on the other hand, signals for DNA repair, trafficking, and autophagy [110]. However,
these signals are not exclusive, as evidence exists that K48-linked chains can associate with autophagy and
K63-linked chains with UPS [111,112].
UBQLN1, 2 and 4 bind proteasomal subunits and ubiquitinated proteins via their UBL and UBA domains,

respectively (Figures 4A and 5B). Therefore, UBQLNs are characterized as shuttle proteins that transport ubiqui-
tinated substrates to the proteasome. Consistent with their shuttle functionality, UBQLNs transiently associate
with the proteasome, primarily via Rpn10 and Rpn13 receptors [48,113]. Indeed, two disease-linked mutations,
UBQLN1 E54D and UBQLN4 D90A, impair proteasomal degradation (Table 2) [21,22]. The positions of these
mutations are in or near the UBL domain, which could lead to decreased binding to the proteasome. Curiously,
neither E54D nor D90A is near the binding interface between UBL and proteasomal receptors (Rpn10, Rpn13).
As described above, the UBA domain binds both monoUb and polyUb chains. Studies of the isolated UBQLN
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Figure 5. Physiological functions of UBQLNs.

(A) Schematic representation of UBQLN physiological functions. (B) UBQLNs target proteins for degradation via UPS. UBQLNs

shuttle K48-linked polyUb-tagged substrates to the proteasome via UBA-polyUb interactions and UBL-proteasome interactions

[7,48,49]. (C) UBQLNs form complexes with ERAD adaptors such as VCP/p97 and UBXD8 to facilitate the extraction of ERAD

substrates from the ER, then transport the substrate to the proteasome for degradation [8,127]. (D) UBQLNs regulate

autophagy at several steps. UBQLN interacts with macroautophagy/autolysosome component LC3 and mediates

autophagosome maturation [9,65,122]. UBQLN stabilizes V-ATPase, which is essential for lysosome acidification and

autophagic degradation [123]. UBQLN also regulates autophagic flux by interacting with mTOR [124]. (E) UBQLN2 assists

HSP70 chaperone machinery. Under non-stress conditions, UBQLN2 adopts an ‘inactive’ state. Upon proteotoxic stress,

UBQLN2 is activated and binds to substrate-bound HSP70. UBQLN2 then shuttles the complex for degradation [28,65].

(F) Tuning of UBQLN oligomerization likely plays a role in PQC pathways. UBQLN2 oligomerizes under physiological conditions

and self-assembles into liquid-like condensates upon stress [13]. UBQLN2 condensates are disassembled by ubiquitin or

K48-linked polyUb [13]. Introduction of a disease-linked UBQLN mutation may cause the formation of aggregates [29].
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UBA domain indicate that the UBA domain has no binding preference to any specific polyUb chains [58,114],
unlike the UBA domains of hHR23 proteins or p62 [115,116]. However, a recent study on full-length UBQLN1
suggests that it has a binding preference for K63-linked polyUb chains (over K48) [114]. PolyUb chain prefer-
ence needs to be examined in the context of the full-length UBQLN proteins.
Whereas the UBL domain predominantly interacts with the proteasome, other parts of UBQLN appear to

modulate UBL-proteasome interactions. ALS-linked mutations in the PXX region of UBQLN2 (P497H, P497S,
P506T, P509S, and P525S) interfere with UBQLN’s interaction with the proteasome (Table 2). The mutants
interact less effectively with Rpn10 of the regulatory cap, as shown by in vitro experiments using GST-fusion

Table 1 Functions of UBQLN proteins

UBQLN1 UBQLN2 UBQLN4

UPS Shuttle ubiquitinated substrates to proteasome for degradation [7].

Autophagy Involved in TDP-43
containing aggresome
[146,173].

Stabilize v-ATPase, promote
lysosome acidification and
autophagic degradation [123].

Involved in autophagy via
UBQLN1 interaction [9].

Modulates autophagosome
formation and acidification
[124].
Regulates autophagic flux
through mTOR signaling
[124].

ERAD Forms complex with
ER-localized VCP/p97 and
erasin, involved in ERAD [8].

Assists in ER-to-cytosol
escape of nonenveloped virus
SV40 [130].
Recognizes mislocalized
transmembrane domain
proteins and targets them for
proteasomal degradation [67].

Molecular
chaperone

Interacts with molecular chaperone HSP70 [28,66].
Chaperones APP by binding
and preventing its
aggregation [10].
Chaperones mitochondrial
membrane proteins [135].

Cytoskeleton
and cell
development

UBQLN1 and 2 interact with IAP, and mediate the interaction of
vimentin-containing intermediate filaments with plasma membrane
[37].

Regulates motor axon
morphogenesis [21].

Implicated in postsynaptic
growth by maintaining Ub
level through interactions with
Leon [142].

Aggregate/
aggresome
related

Promotes Huntingtin inclusion
body formation and
degradation through
autophagy [120].
Is recruited and sequestered
by polyQ expanded protein
aggregates [153].
Promotes TDP-43 and p62
aggregation [39].
Modulates TDP-43 level and
triggers mislocalization of
endogenous TDP-43 from
nucleus to cytoplasm [149].

Other functions Implicated in endocytosis
through interactions with
Eps15 [42].

Drives NF-κB (transcription
factor, implicated in
inflammation) activity [39].

Balances between DNA
damage repair pathways [38].
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Table 2 Disease mutations of UBQLNs Part 1 of 2

Mutation2 Phenotype3

Bioinformatic
predictions by silico
analysis4 Structure, function and pathology studies

Sticker or
spacer5[13] References

S155N1 SALS without
dementia

Benign by PolyPhen-2
and SIFT

[174]

P189T1 SALS without
dementia

Damaging protein
function by PolyPhen-2
and SIFT

[174]

A282V1 Sporadic FTD Pathological by
MutationTaster,
PolyPhen, SIFT, and
AGVGD

[89]

A283T1 SALS Pathological by
MutationTaster,
PolyPhen, SIFT, and
AGVGD

[89]

S346C1 FTD Neutral by PMUT and
SIFT

[175]

M392I1 SALS and
Madras-type motor
neuron disease
(MND)

[176]

M392V1 SALS Damaging by
Polyphen-2, tolerated by
SIFT

[177]

S400G1 SALS Neutral by PMUT and
SIFT

[175]

Q425R1 SALS Pathological by
MutationTaster,
PolyPhen, SIFT, and
AGVGD

[89]

P440L1 SALS Pathologic by PMUT,
tolerated by SIFT

[175]

M446R1 FALS Pathological by PMUT,
non-neutral by SNAP

[20]

T467I1 Family history of
dementia, without
ALS

Tolerated by SIFT Sticker [178]

T487I FALS without
dementia

Colocalization with ubiquitin and frequent
colocalization with TDP-43 and FUS in
postmortem spinal cord tissue.

Sticker [148]

A488T1 SALS Deleterious by SIFT Sticker [88]

P494L FALS/FTD Deleterious by SIFT Expression of P494L impairs autophagy in the
lymphoblast and HSP70 binding

Sticker [88]

P497H ALS with or without
dementia

Pathological by PMUT,
non-neutral by SNAP
[20]

Expression of P497H alters ubiquitin binding in
cells [179], impairs UPS [15,179] and
exacerbates TDP-43 pathology in rats [179].
UBQLN2 P497H was hyper-ubiquitinated in
cells [179]. It also reduces interaction with FUS,
impairs its function in regulating FUS–RNA
complex dynamics and stress granule formation
[12]. Besides these, P497H impairs the
association with UBXD8 and disrupts ERAD
[128]. Overexpression drives TDP-43 pathology

Sticker [12,15,20,30,31,39,
128,157,179,180]

Continued
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Table 2 Disease mutations of UBQLNs Part 2 of 2

Mutation2 Phenotype3

Bioinformatic
predictions by silico
analysis4 Structure, function and pathology studies

Sticker or
spacer5[13] References

in neuronal cells [39,180], causes defective
autophagy and ALS-like phenotypes including
cognitive deficits and neuronal loss in rats
[31,157].

P497L ALS with or without
dementia

Gliosis exists in corticospinal tracts of carriers’
brain.

Sticker [19]

P497S FALS with or without
dementia

Deleterious by SIFT [88] Expression of P497S impairs autophagy in the
lymphoblast and HSP70 binding [88]. It
impedes autophagy by reducing
autophagosome acidification in mouse model
[122].

Sticker [15,88,122]

P500S FALS Deleterious by SIFT Spacer [88]

P506A FALS and spastic
paraplegia (SP)

Deleterious by SIFT Expression of P506A impairs autophagy in the
lymphoblast and HSP70 binding.

Sticker [88]

P506S ALS with or without
dementia

Pathological by PMUT,
neutral by SNAP [20].
Not tolerated by SIFT,
benign by PolyPhen [91]

Frequent localization in neuronal cytoplasmic
inclusions in the dentate gyrus of postmortem
tissue [90].

Sticker [20,90,91]

P506T ALS with or without
dementia

Expression of P506T increases ubiquitination
level [30], reduces HSP70 interaction [28] and
impairs UPS [15]. It reduces interaction with
FUS, impairs its function in regulating FUS–RNA
complex dynamics and stress granule formation
[12]. P506T also increases UBQLN2
aggregation propensity [29], alters droplet
morphology [29], causes cognitive deficits [28]
and increases neuronal death [29] in mice.

Sticker [12,15,28–30]

P509S ALS P509S mutant shows similar ubiquitination level
and solubility compared with WT [30].

Spacer [15,30]

P525S ALS P525S mutant shows slightly higher ubiquitination
level and solubility compared with WT. Expression
of P525S increases neuronal toxicity [30].

Spacer [15,30]

P533L1 FALS Pathological by PMUT,
non-neutral by SNAP

Spacer [20]

V538L1 SALS Neutral by PMUT and
SNAP [20]

NMR analysis shows V538 was in spacer
region, which does not affect phase separation
dramatically [13].
Turbidity assay of V538L shows it behaves
almost the same as WT using UBQLN2 450–
624 construct [100].

Spacer [13,20,100]

UBQLN1
E54D

Brown–Vialetto–Van
Laere syndrome
(BVVLS)

Not functionally
deleterious by PMUT,
PolyPhen and SIFT

It forms cytosolic aggregates with TDP-43.
Expression of UBQLN1 E54D impairs UPS.

[22]

UBQLN4
D90A

FALS Expression of UBQLN4 D90A reduces
proteasomal efficiency. It also impairs normal
motor axon morphogenesis in mouse neurons
and zebrafish.

[21]

1pathology needs further validation.
2Mutations are in UBQLN2 unless otherwise noted.
3SALS = sporadic ALS, FALS = familial ALS.
4Bioinformatics prediction results are from the corresponding literature references (last column).
5Residue designated as ‘sticker’ or ‘spacer’ based on LLPS results specified in ref. [13] using the UBQLN2 450–624 construct.
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constructs of UBQLN2 [32]. The ALS-linked mutations do not appear to negatively affect UBQLN2’s binding
to ubiquitinated substrates, nor does the expression of UBQLN2 mutants impact overall proteasome activity.
Rather, the mutants are defective in transporting ubiquitinated substrates to the proteasome due to decreased
affinity [32].
Ub also affects the ability of UBQLN2 to phase separate and form biomolecular condensates, with potential

implications for how LLPS contributes to UPS function [13]. We found that noncovalent Ub binding to the
UBA domain of UBQLN2 drives disassembly of UBQLN2 condensates in vitro (Figure 5F, top). Importantly,
noncovalent interactions between UBQLN2 and K48-linked tetra-Ub, the canonical signal for proteasomal
degradation, disassemble UBQLN2 condensates. We speculate that Ub-mediated phase transitions of UBQLN2
also occur in cells, enabling a mechanism where UBQLN2 could shuttle ubiquitinated proteins out of conden-
sates or membraneless organelles.

UBQLNs interface with multiple autophagy components
Autophagy is another major degradative pathway for cellular components. Autophagy complements the UPS in
degrading cytosolic proteins, protein aggregates, RNA, and organelles in bulk. Macroautophagy is the most
studied autophagy in mammalian cells, and it relies on the formation of autophagosomes, double membrane-
bound structures that fuse together with lysosomes [117]. Microautophagy engulfs intracellular proteins and
organelles in lysosomes, while chaperone-mediated autophagy (CMA) depends on chaperones like Hsc70 to
transport the substrates into lysosome. In all types of autophagy, the acidic environment and the cocktail
of hydrolases provided by the lysosomes ensure substrate degradation [118]. Autophagy is an important stress-
response mechanism that promotes cell survival, especially during times of starvation [118]. Accordingly,
autophagy must remain tightly regulated to maintain homeostasis. Several proteins share the regulatory respon-
sibility, with the mechanistic target of rapamycin (mTOR) signaling playing a key role [119].
Compared with UPS, the molecular mechanisms of UBQLNs in autophagy are less understood. Nonetheless,

UBQLNs associate with autophagy components and autophagy substrates (Figures 4A and 5D). UBQLN2 and
yeast UBQLN/Dsk2 interact with mutant Huntingtin protein, facilitating its clearance via autophagy [120].
UBQLN2 reduces accumulation of mutant Huntingtin in mouse models of Huntington’s disease [121].
UBQLN1, UBQLN2, and UBQLN4 bind to macroautophagy/autolysosome component 1A/1B-light chain 3
(LC3) and facilitate the process in which LC3-I matures to LC3-II [9,65,122]. LC3-II then initiates formation
and elongation of the autophagosome [118]. Indeed, an ALS-linked mutant of UBQLN2 (P497H) causes a
decreased LC3-II to LC3-I ratio [31]. Interestingly, the mutation also reduces expression levels of several autop-
hagy proteins, including LC3, p62, ATG7 and a lysosome/CMA protein LAMP2a over time, implying
additional autophagy mechanisms that involve UBQLN2 [31]. Notably, UBQLN1 itself is a substrate of both
macroautophagy and CMA, and the CMA-targeting motif (KFERQ) is present in all of UBQLN1, 2, and 4
[65]. The degradation of UBQLN1 by the two autophagy pathways could pose important regulatory implica-
tions. Recently, another mechanism by which UBQLN2 contributes to autophagy was identified. A study on
five ALS-linked mutants of UBQLN2 revealed that UBQLN2 interacts with the proton pump V-ATPase to
protect it from degradation, and promotes stable V-ATPase formation [123]. Proper V-ATPase function is
essential for lysosome acidification and autophagic degradation [122,123]. Loss of UBQLN2 or ALS-linked
mutation (P497S) results in reduced autophagosome acidification [122]. In addition, three other UBQLN2
disease-linked mutants (P494L, P497S, and P506A) were found to disturbed autophagic degradation in
lymphoblast [88].
Importantly, UBQLN1 interacts with and modulates the activity of the mechanistic target of rapamycin

(mTOR) [124], whose kinase activity inhibits autophagosome formation and lysosome biogenesis [119,125].
Thus, UBQLN1 may indirectly regulate autophagic flux [124]. Another mechanism by which UBQLNs may
participate in autophagy is through their association with polyUb chains. As mentioned above, UBQLN1
exhibits a binding preference for K63-linked polyUb chains over K48 [58]. As K63-linked polyUb chains are
often associated with autophagy, UBQLN1 interactions with these chains could be important for regulating
autophagy [126].

UBQLNs associate with ERAD adaptors
Nascent membrane protein folds into their native conformation in ER. Despite the assistance of a variety of
cellular factors, a significant fraction of newly synthesized proteins ends up misfolded [1]. The endoplasmic
reticulum-associated degradation (ERAD) pathway prevents potential toxicity stemming from accumulation of
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misfolded proteins. ERAD components form complexes to recruit machinery to ubiquitinate the misfolded
protein, and then direct it to the cytosolic proteasomes for degradation. UBQLNs participate in ERAD mainly
by facilitating the translocation of ERAD substrate from the ER to the proteasome [8]. Specifically, UBQLN1
forms a complex with the segregase, Valosin-containing protein (VCP/p97), and UBX-containing protein
UBXD2/erasin (Figure 5C). The complex facilitates the extraction of ERAD substrates from the ER [8].
Additionally, UBQLN2 interacts with another ERAD adapter, UBXD8, that possesses similar domain architec-
ture as erasin [127,128]. ERAD is disturbed when the interaction between UBQLN2 and UBXD8 is impaired
by UBQLN2 pathogenic mutation P497H [128]. In addition to ERAD substrates extraction, UBQLN2 is also
involved in ER–Golgi trafficking. P497H and another ALS-linked mutation, P506T, have been found to inhibit
protein transport from ER to the Golgi in neuronal cells, resulting in disorganized and fragmented Golgi [129].
While most transmembrane proteins are successfully integrated into the ER in the co-translational process, a

noteworthy portion of transmembrane proteins frequently fail to reach the ER [1]. UBQLN4 complements
ERAD by recognizing the exposed hydrophobic transmembrane domains of those proteins that fail to integrate
into the ER and targets these proteins for degradation [67]. The STI1-II region of UBQLN4 is essential for
transmembrane domain recognition. Notably, the STI1-II region is also involved in binding a nonenveloped
polyomavirus, Simian Virus 40 (SV40). UBQLN4 interacts with the structural coat protein, VP1 of SV40,
captures the virus at the ER, and facilitates the penetration of the virus through the ER into the cytosol [130].
It was proposed that the virus developed affinity to UBQLN4, therefore exploiting the ER-associated functions
of UBQLN4 to infect cells.

UBQLNs assist chaperone machinery and stabilize client proteins
Molecular chaperones assist and maintain proper folding and prevent aggregation of cellular proteins, playing a
critical role in maintaining homeostasis. HSP70 chaperones participate in the folding and assembling of newly
synthesized proteins, as well as refolding of misfolded and aggregated proteins [131–133]. UBQLN1 and
UBQLN2 interact with HSP70 chaperones, as discussed above [28,66]. As a co-chaperone, UBQLN2 builds a
connection between client-bound HSP70 and the proteasome, facilitating the degradation of misfolded and
aggregated proteins (Figure 5E) [28]. Disease-linked mutants of UBQLN2 disrupt this interaction [28].
Aside from working with HSP70s, the UBQLNs themselves exhibit molecular chaperone and/or protein

stabilization functions. How UBQLNs delineate between degradation and stabilization pathways for specific
client proteins remains unclear. UBQLN1 stabilizes amyloid precursor protein (APP) upon exposure to elevated
temperature, and prevents the toxic aggregation of proteolytic fragments of APP [10]. Moreover, the UBA dir-
ectly interacts with presenilin 1 and 2, which form the catalytic core of the APP processing γ-secretase complex
[17,134]. As previously mentioned, UBQLN1 also stabilizes client proteins like BCLb, IGF1R and ESYT2
[41,68]. This function, however, should be distinguished from its chaperone activity. Instead, UBQLN1 blocks
polyubiquitination of the clients, therefore protecting the clients from proteasomal degradation.
The versatility of UBQLN1 is further highlighted in its relationship with mitochondrial membrane proteins

[135]. As a molecular co-chaperone, cytosolic UBQLN1 binds to the transmembrane domains of these proteins
and shields them from aggregation during their time in the cytosol. Meanwhile, the UBL domain of UBQLN1
remains bound to its own UBA as long as the substrate remains unmodified. In the event that the mitochon-
drial insertion fails and the membrane protein lingers in the cytosol, UBQLN1 recruits ubiquitination machin-
ery to modify the substrate, and then guides the mitochondrial protein to the proteasome for degradation
[135]. A separate study further confirmed that UBQLN1’s role in mitochondrial membrane protein integration
is indispensable. Absence of UBQLN1 leads to accumulation of mitochondrial proteins in the cytosol [136].

UBQLNs associate with the cytoskeleton to impact cell differentiation and
development
UBQLN1 and 2 were first identified as human proteins linking integrin-associated protein with cytoskeleton 1
and 2 (hPLIC1 and hPLIC2) [37,137]. UBQLN1 and 2 interact with integrin-associated protein (IAP), which
regulates the interaction between vimentin-containing intermediate filament and plasma membrane [37].
Overexpression of UBQLN1 alters the organization of vimentin in cells [37]. UBQLN1 and 2 colocalize with
the cytoskeleton, which is an interlinking protein filament system essential for the growth, differentiation, func-
tion, and shape of cells [37,138]. UBQLN2 distributions vary between undifferentiated and differentiated mam-
malian cells. In undifferentiated cells, perinuclear fiber localization of UBQLN2 has been observed, contrasting
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the extensive cytosolic fiber staining observed in differentiated cells [137]. However, the functional significance
of UBQLN-cytoskeleton interactions remain largely unclear. One study showed that UBQLN2 safeguards cyto-
skeletal integrity by forming a complex with phosphoinositide phosphatase myotubularin 1 (MTM1). The
complex recognizes and guides misfolded intermediate filament proteins to the proteasome for degradation
[139]. For example, UBQLN2 interacts with vimentin and mediates the degradation of misfolded vimentin
[139]. In this manner, UBQLNs use their PQC functionality to protect misfolded proteins from aggregating.
Moreover, UBQLN4 has been shown to activate ERK signaling, a crucial pathway for cell differentiation and
apoptosis [140].
UBQLNs facilitate neuronal morphogenesis, which is crucial for the functions of neurons [141]. In

Drosophila, in association with the deubiquitinase USP5/leon, dUBQLN regulates cellular Ub level during
neuronal development, and disruption of this regulatory mechanism causes axon termini to not extend prop-
erly [142]. In mammals, UBQLN4 is linked to motor axon morphogenesis. The ALS-associated D90A mutant
in UBQLN4 causes abnormal morphology with more neurites and compromised viability [21].
UBQLNs also associate with aggresomes, perinuclear structures that contain ubiquitinated misfolded proteins

transported via microtubules [14,143]. The cytoskeleton reorganizes and forms a cage-like, vimentin-containing
structure around the aggresome [54]. UBQLN1 transports aggregates to the aggresome at the
microtubule-organizing centres (MTOC), and UBQLN1 itself is also found in the aggresome [14]. Taken
together, evidence suggests that UBQLNs, through the association with the cytoskeleton, are involved in the
formation of aggresomes.

UBQLNs interact with DNA/RNA binding proteins
In response to DNA double strand breaks (DSBs), cells resort to two major DNA damage response pathways: the
faster but error-prone nonhomologous end joining (NHEJ), and the slower but more accurate homologous recom-
bination repair (HHR) pathway [144]. The balance between the two is essential for ensuring efficient repair. Upon
detection of DNA damage in the nucleus, UBQLN4 is recruited to the damage sites where it undergoes phosphor-
ylation at residue S318. Phosphorylated UBQLN4 mediates the Ub-dependent degradation of double-strand break
repair protein MRE11, which is a HHR regulator [38]. Therefore, overexpression of UBQLN4 shifts the NHEJ:
HHR balance towards NHEJ. On the other hand, the UBQLN4 loss-of-function mutation that creates a premature
stop codon, R326X, leads to an increased HHR-driven response. Thus, both mutation and change in expression
levels of UBQLN4 modulate UBQLN4’s regulation of DNA damage repair pathways.
UBQLNs also participate in regulating DNA/RNA metabolism, as proteomics studies reveal interactions

between UBQLNs and DNA/RNA-binding proteins including hnRNPA1, FUS, and TDP-43 [12,145,146].
Interestingly, the central region of UBQLNs mediate interactions with hnRNPA1, and data suggest that
UBQLN2 stabilizes hnRNPA1 [145]. UBQLN2 regulates the formation of FUS–RNA complexes and also pro-
motes their dynamics [12]. UBQLN2 and TDP-43 colocalize into protein inclusions found in brains of ALS
patients or transgenic mouse, although the interactions between UBQLNs and TDP-43 remain unclear
[15,147–149]. The pathological hallmarks of TDP-43 usually include mislocalization of the protein from
nucleus to cytoplasm, formation of toxic C-terminal TDP-43 (residues 218–414), and protein aggregation,
among others [150–152]. Mutations in UBQLNs compromise normal function of these RBPs. ALS-linked
UBQLN2 mutations P497H, P497S, P506T, P509S, and P525S reduce UBQLN2 binding to hnRNPA1 and
altered subcellular distribution of hnRNPA1 protein [145]. In addition, UBQLN2 P497H or P506T mutations
impair the interaction between UBQLN2 and FUS, as well as disrupt FUS–RNA complex dynamics [12].
Studies found that expression of WT UBQLN2 [15], UBQLN2 P497H [31], P506T [29], T487I [148] and
UBQLN1 E54D [22] result in the mislocalization of TDP-43 and accumulation in the cytoplasm. Much
remains to be determined regarding the role of UBQLNs in modulating the function of RBPs. It must be noted
that each of these RBPs also undergo LLPS and colocalize with biomolecular condensates in cells. Therefore,
UBQLNs may further regulate RBP LLPS, as recently demonstrated for FUS [12].

Is tuning of UBQLN oligomerization at the crossroads of
PQC pathways?
Given UBQLNs’ versatility to function in multiple protein degradation pathways, what are the signals that
direct UBQLNs to these pathways? We hypothesize that manipulation of UBQLN oligomerization may play a
role. Abundant cell-based evidence highlights how UBQLNs self-assemble into puncta of different biophysical
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characteristics, i.e. liquid-like vs. solid-like, membraneless vs. membrane-bound. These puncta include
stress-induced biomolecular condensates, membrane-bound autophagosomes, aggresomes, and insoluble
aggregates/inclusions [9,14,17,39,120,153]. As we discussed above, the STI1 regions mediate both UBQLN self-
association and interactions of several binding partners with UBQLNs. Therefore, competition likely exists
between client interactions and oligomerization. One hypothesis is that UBQLNs adopt an ‘inactive’ state, pos-
sibly employing head-to-tail UBL-UBA interactions to render it dimeric (Figure 5F). Self-association of
UBQLNs through the STI1 regions could prevent unnecessary protein–protein interactions between UBQLNs
and their binding partners. Upon activation with a client protein, for example, UBQLNs could interface with
HSP70 or other chaperones, potentially changing the UBQLN oligomeric state. Coupled with the knowledge
that at least one UBQLN (UBQLN2) can use oligomerization to drive self-assembly into liquid-like biomolecu-
lar condensates, oligomerization likely plays a substantial role in regulating UBQLN functionality.
Recently, it was made clear that shuttle protein oligomerization is closely related to the pathway selection

between UPS and autophagy, specifically for two Ub-binding shuttle proteins in yeast: Dsk2 (yeast UBQLN
homolog) and Cue5 [154]. Unlike UBQLNs, Dsk2 only exists in monomeric or dimeric forms and mainly
directs its clients to the proteasome. In contrast, Cue5 oligomerizes extensively and directs clients to autophagy.
Using designed UBL-UBA constructs with a middle oligomerization-capable FKBP domain, Lu et al. elegantly
illustrated that oligomerization-capable UBL-UBA proteins do not facilitate proteasomal degradation, but
rather promote autophagic degradation, and vice versa [154]. In a similar manner, tuning of UBQLN oligomer-
ization may be used to determine UBQLN participation in the two degradation pathways. Oligomerization
could be controlled by at least three ways. First, as we discussed above, the oligomerization-driving STI1-II
domains of the UBQLN paralogs exhibit different extents of disorder and prion-like characteristics and could
determine the propensity for each UBQLN to oligomerize. Second, it has been established that noncovalent
interactions between the adaptor protein and its clients could affect the oligomerization propensity of the
adaptor, which could apply to UBQLNs as well [104,155]. Third, disease-linked mutations perturb oligomeriza-
tion and aggregation propensity both in vitro and in vivo (Table 2) [4,11,29,30]. Mutations on UBQLNs likely
act in a position-dependent manner to affect oligomerization.

Is UBQLN aggregation functional?
The involvement of UBQLNs in aggregates could either be physiological or pathological. On the one hand,
UBQLNs may associate with aggregates to exercise their physiological functions in promoting degradation via
PQC pathways. For example, through their shuttling activities in either the proteasomal or autophagic degrad-
ation, the UBQLNs could drive clearance of aggregates [120]. UBQLNs directly interact with non-ubiquitinated
parts of client proteins, such as how UBQLN1 UBL binds to the UIMs of EPS15 to promote colocalization into
aggresomes [42]. As mentioned above, UBQLN2 is involved with the HSP70 system to promote proteasomal
degradation of insoluble ubiquitinated protein aggregates [28]. Aggregates are first solubilized by HSP70–HSP110
disaggregase activity, followed by UBQLN2 binding to ubiquitinated protein and the proteasome. On the other
hand, UBQLNs may become trapped in aggregates due to STI1-driven association with the aggregated client
protein and/or UBA interactions with the polyUb tag on the aggregated protein. Indeed, UBQLNs are commonly
found in Ub-containing inclusions commonly associated with neurodegenerative disorders: UBQLN1 is found in
Ub-rich cytoplasmic aggregates upon proteasome inhibition as well as in ALS-associated TDP-43 aggregates
[42,146], UBQLN2 associates with ubiquitinated inclusions of ALS patients [15], and UBQLN4 is also found in
stress-induced Ub-positive aggregates [67]. Sequestration of UBQLNs in aggregates could result in compromised
functions of the UBQLNs, as UBQLNs would not be available to participate in degradation of other proteins.
For example, UBQLN2 can be sequestered into polyubiquitinated, mutant huntingtin and ataxin-3 aggregates,
which presumably reduces the cellular level of available UBQLN2 and compromises proteostasis [153].
Aside from interacting with aggregated proteins, UBQLNs possess an intrinsic ability to aggregate. This is

not surprising given that UBQLNs self-associate. However, UBQLNs likely autoregulate aggregation via their
unique UBL-UBA domain architecture. A recent study shows that the UBA domain of UBQLN2 intrinsically
aggregates into amyloid-like fibers, while the UBL domain does not [29]. These observations correlate with the
number of observed puncta in neuronal cells via transfection experiments using different UBQLN2 deletion
constructs. An increased number of UBQLN2 intracellular puncta/aggregates were observed with UBQLN2
ΔUBL, whereas the number of aggregates and puncta were significantly decreased in neurons expressing
UBQLN2 ΔUBA [29]. Interestingly, these results are consistent with our lab’s UBQLN2 LLPS observations,
whereby removal of the UBA domain increased the protein concentration required for LLPS, and removal of
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the UBL domain had the opposite effect [13]. The countering effects of the UBL and UBA domains on aggre-
gation propensity suggest that UBQLNs are poised to promote or inhibit aggregation when engaged with
binding partners.
Ub binding interferes with UBQLN aggregation given that UBA interacts with Ub. Indeed, studies have

suggested that UBQLN2 aggregation, puncta formation and neuronal toxicity are regulated by Ub binding. For
example, the Ub-binding-deficient UBQLN2 mutant L619A was more prone to form puncta than wild-type
UBQLN2 in neurons and increases neuronal death, suggesting that the L619A mutation increases UBQLN2
aggregation propensity with deleterious consequences [29]. In contrast, in a separate study, the same mutation
(UBQLN2 L619A) prevents both WT and mutant UBQLN2 (P506T or P497H) from forming puncta/foci in
HEK293 cells [28]. Similarly, the F594A substitution, which also abolishes Ub binding, reduces UBQLN2
P497H aggregation propensity and toxicity in Drosophila neurons [30]. Whether Ub positively or negatively
regulates aggregation propensity will likely depend on the client protein, Ub chain types, and other protein–
protein interactions involving UBQLNs.
Increasing evidence suggests that disease-linked mutations in UBQLN2 promote aggregation, although there

is no clear consensus. In a C-terminal construct of UBQLN2 containing residues 450–624, ALS-linked muta-
tions in the PXX region significantly perturb oligomerization propensity and promote LLPS-induced aggrega-
tion [11]. Some of these mutants formed aggregates in vitro over time, especially at positions 497 and 506
[11,100]. However, the effects are amino-acid specific, as P497H and P497S variants produce amorphous aggre-
gates whereas P497L droplets exhibit more gel-like consistency. UBQLN2 P506T impairs droplet morphology
in transgenic mice by forming irregularly shaped puncta when compared with WT puncta [29]. Interestingly,
those same mutants that significantly impacted LLPS cause ALS at an earlier age, and vice versa; this suggests a
connection between LLPS behavior and ALS disease pathology [156]. Consistent with these findings, disease-
linked mutations P506T or P497H increases UBQLN2 aggregation propensity in cultured cells and in animal
models [29,157]. In contrast, introduction of some of these disease-linked mutations (P497H, P506T, P509S,
P525S) in recombinant full-length UBQLN2 did not increase aggregation propensity of UBQLN2 [28]. There
may be other factors that modulate the effects of UBQLN disease-linked mutations on aggregation propensity
in cells. Kim et al. showed that UBQLN2 P497H, but not P506T, P509S, P525S, was hyper-ubiquitinated in
HEK 293T cells, and that P497H solubility decreased compared with WT. This indicates that both the type of
the substitution and position determine the effect of mutation [30]. It must be noted that the relationship
between protein aggregation and cellular toxicity is not clear. In some cases, the propensity of UBQLN2
variants to form aggregates correlates with the risk of neuronal death [29]. In other cases, cellular toxicity does
not necessarily correspond with UBQLN aggregation propensity [30].

UBQLN expression levels are linked to disease
Organization of UBQLNs into punctate structures in cells is exquisitely sensitive to UBQLN protein expression
level. This is not surprising as increased expression of UBQLNs will promote UBQLN self-assembly. Indeed,
numerous studies reveal that overexpression or knockdown of even wild-type UBQLN can exert deleterious
effects [29,43]. Overexpression of UBQLN2 leads to impairment of protein degradation by UPS and autophagy
[61]. Overexpression of UBQLN2 P497H causes pathological UBQLN2 accumulations, neuronal loss, cognitive
and behavioral deficits, as well as impaired autophagy in transgenic mice [157,158]. Other studies confirm that
overexpression of UBQLN2 P506T or P497S is associated with early deficits and more severe neurotoxicity in
mice [147,158]. Overexpressing UBQLN1 in the eye of Drosophila induced age-dependent retinal degeneration,
and the expression of an Alzheimer’s Disease-associated splicing variant of UBQLN1, UBQ-8i, exacerbates the
degeneration [16,159]. Meanwhile, knockdown of UBQLNs may also cause detrimental effects to cellular func-
tions, such as increased cell death and symptoms associated with Huntington’s disease [23]. Knockdown of
either wild-type or mutant (P497H) UBQLN2 caused accumulation of ERAD substrate, the null Hong Kong
variant of α-1-antitrypsin (NHK) [128]. Moreover, knockdown of UBQLN2 increases turnover and degradation
of hnRNPA1, impairing proteostasis and RNA metabolism in cells [145]. Dysregulation of UBQLN expression
level is also linked to cancers. UBQLN1 expression positively correlates with patient overall outcome and
survival rate in invasive breast carcinoma [27], gastric adenocarcinoma [24], and lung adenocarcinoma [26].
UBQLN2 shows similar prognostic potential in hepatocellular carcinoma (HCC) [160] and osteosarcoma [161].
However, UBQLN4 expression levels are increased in certain neuroblastomas and melanoma [38] and
connected to worse outcomes.
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Clearly, UBQLN protein expression levels contribute to UBQLNs’ roles in PQC and in the progression of
several diseases. Although regulatory mechanisms for UBQLN expression levels remain largely unknown,
studies have identified a micro-RNA (miRNA), MIR-155, to be a down-regulator of UBQLN1 and UBQLN2
protein expression [162]. MIR-155 has been studied for its connection to cardiovascular diseases and multiple
cancers, as MIR-155 levels are elevated in certain cancer cells [163]. miRNAs regulate protein expression at the
post-transcriptional level by targeting the mRNAs and inhibiting their translations [164]. Post-translationally,
UBQLNs’ ability to enter condensates and aggregates suggests that sequestrations of UBQLNs in these compart-
ments could also directly affect their protein levels in the cells.

Future directions and unanswered questions
In this review, we highlighted current evidence that unambiguously positions UBQLNs at the crossroads of
protein quality control pathways. The ability of UBQLNs to either promote the degradation or stabilization of
their clients/substrates, and that dysregulation of these proteins cause diseases from ALS to cancers, reveal the
importance of UBQLNs in cells. However, as much as we have learned about these proteins over the last
twenty years, UBQLNs present many more questions for future studies.
What is the correlation between UBQLN biochemical properties (i.e. oligomerization, LLPS and aggregation)

and physiological functions? UBQLN2 oligomerization and LLPS underlie UBQLN2 aggregation propensity.
To address this point, identification of the ‘stickers’ that drive LLPS is essential [100]. Some of these sticker
residues reside in the domains employed for proteasome or ubiquitin binding, thus interactions with these pro-
teins likely modulate phase separation and oligomerization. Likewise, introduction of disease-related mutations
interferes with protein degradation pathways and affect UBQLN2 aggregation propensity. Future experiments
are needed to clarify the relationship among UBQLN oligomerization, LLPS, and aggregation.
How is oligomerization regulated by protein–protein interactions with PQC machinery, chaperones, and

client proteins? Interestingly, oligomerization of other chaperones can regulate their activity with clients
[165,166]. This applies to the functionality of HSP70 and small HSP chaperones. Does UBQLN oligomerization
regulate degradation pathway selection, particularly between UPS and autophagy? There is likely a regulatory
system that aids the decision-making process, presenting a very curious topic for future studies. Do UBQLNs
use oligomerization to control localization into membraneless organelles or other subcellular compartments?
Along the same lines, why do UBQLNs aggregate with some proteins, but prevent aggregation of others?
Do post-translational modifications (PTMs) of UBQLNs further modulate their physiological functions in

cells? Despite the relative lack of information regarding PTMs on the UBQLNs, studies have found evidence
for phosphorylation on UBQLNs [36,38], and ubiquitination on mutant UBQLN2 [30]. While there is little
known about the modification on other UBQLNs, ubiquitination of UBQLN2 likely has functional significance
and a huge influence on its biophysical properties. On the other hand, phosphorylation may affect protein–
protein interactions of the UBQLNs as well as self-interactions. We found that amino acid substitutions that
mimic phosphorylation substantially alter UBQLN2 LLPS, regardless of position where the substitution was
installed [100]. Moreover, phosphorylation has been shown to change the LLPS profile of other proteins that
undergo LLPS such as FUS [167]. Therefore, it is likely that phosphorylation on the UBQLNs also changes its
LLPS behavior, which could then tune the UBQLN-associated membraneless organelles inside the cell. Notably,
many disease-linked mutations in the PXX region of UBQLN2 are to residues that can be phosphorylated (e.g.
His, Ser, Thr) (Table 2). Additionally, we speculate that PTMs could help UBQLNs decide between stabilizing
their binding partners or facilitating their degradation by autophagy or the proteasome.
The versatility of UBQLNs in acting across many PQC pathways has offered insights into how the individual

pathways (UPS, autophagy, and ERAD) work and also illuminated on the cross-talk and connections among
the various components of the complex PQC system in cells. However, the diverse functions of UBQLNs have
often made it difficult to pinpoint exactly how disease-linked mutations in UBQLNs cause disease. We empha-
size the need for additional biochemical and biophysical studies of UBQLNs to address the effects of mutations
on a structural and dynamical level. The multidomain architecture of UBQLNs offers a rich combination of
structured and intrinsically disordered domains that interact with each other to promote self-assembly and
oligomerization. Regulation of these inter-domain interactions is at the core for how UBQLNs reorganize into
intracellular puncta such as biomolecular condensates, autophagosomes, aggresomes, and aggregates. Cells are
exquisitely sensitive to the expression levels of UBQLNs, as dysregulation often results in disease. We now need
to determine the signaling mechanisms that modulate UBQLN self-assembly into different subcellular struc-
tures, and how this translates to UBQLN functionality in cells. We expect that improved knowledge of UBQLN
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structure and function will illuminate on disease mechanisms associated with UBQLNs in neurodegenerative
diseases and cancers.
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